Enhanced levels of Red-mediated recombinants in mismatch repair mutants
نویسنده
چکیده
Homologous recombination can be used to generate recombinants on episomes or directly on the Escherichia coli chromosome with PCR products or synthetic single-stranded DNA (ssDNA) oligonucleotides (oligos). Such recombination is possible because bacteriophage -encoded functions, called Red, efficiently recombine linear DNA with homologies as short as 20–70 bases. This technology, termed recombineering, provides ways to modify genes and segments of the chromosome as well as to study homologous recombination mechanisms. The Red Beta function, which binds and anneals ssDNA to complementary ssDNA, is able to recombine 70-base oligos with the chromosome. In E. coli, methyl-directed mismatch repair (MMR) can affect these ssDNA recombination events by eliminating the recombinant allele and restoring the original sequence. In so doing, MMR can reduce the apparent recombination frequency by >100-fold. In the absence of MMR, Red-mediated oligo recombination can incorporate a single base change into the chromosome in an unprecedented 25% of cells surviving electroporation. Our results show that Beta is the only bacteriophage function required for this level of recombination and suggest that Beta directs the ssDNA to the replication fork as it passes the target sequence.
منابع مشابه
Requirement for Msh6, but not for Swi4 (Msh3), in Msh2-dependent repair of base-base mismatches and mononucleotide loops in Schizosaccharomyces pombe.
The msh6 mismatch repair gene of Schizosaccharomyces pombe was cloned, sequenced, and inactivated. Strains bearing all combinations of inactivated msh6, msh2, and swi4 (the S. pombe MSH3 ortholog) alleles were tested for their defects in mitotic and meiotic mismatch repair. Mitotic mutation rates were similarly increased in msh6 and msh2 mutants, both for reversion of a base-base substitution a...
متن کاملReplication Characteristics of Herpes Simplex Virus Type-1 (HSV-1) Recombinants in 3 Types of Tissue Cultures
A complication in the analysis of the role of ICP34.5 gene in the herpes simplex virus type-1 (HSV-1) lifecycle is the presence of overlapping antisense gene, open reading frame P (ORF P), which is also deleted in HSV-1 ICP34.5 negative mutants. A HSV-1 wild type strain (17+) ICP34.5/ORF P deletion mutant (1716) is totally avirulent in animal models and impaired in a number of in vitro function...
متن کاملHighly mismatched molecules resembling recombination intermediates efficiently transform mismatch repair proficient Escherichia coli.
The ability of related DNAs to undergo recombination decreases with increased sequence divergence. Mismatch repair has been proposed to be a key factor in preventing homeologous recombination; however, the contribution of mismatch repair is not universal. Although mismatch repair has been proposed to act by preventing strand exchange and/or inactivating multiply mismatched heteroduplexes, there...
متن کاملUV irradiation causes the loss of viable mitotic recombinants in Schizosaccharomyces pombe cells lacking the G(2)/M DNA damage checkpoint.
Elevated mitotic recombination and cell cycle delays are two of the cellular responses to UV-induced DNA damage. Cell cycle delays in response to DNA damage are mediated via checkpoint proteins. Two distinct DNA damage checkpoints have been characterized in Schizosaccharomyces pombe: an intra-S-phase checkpoint slows replication and a G(2)/M checkpoint stops cells passing from G(2) into mitosis...
متن کاملSome properties of site-specific and general recombination inferred from int-initiated exchanges by bacteriophage lambda.
The site-specific recombination at the attachment site for prophage integration might proceed by two general mechanisms: (1) a concerted reaction without a free intermediate; (2) a sequential mechanism differing from typical general recombination only by an inability of the cross-strand intermediate structure to migrate into the region of nonhomology adjacent to the attachment site. The blocked...
متن کامل